Skip to contents

Basics

Install chevreulProcess

R is an open-source statistical environment which can be easily modified to enhance its functionality via packages. chevreulProcess is a R package available via the Bioconductor repository for packages. R can be installed on any operating system from CRAN after which you can install chevreulProcess by using the following commands in your R session:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
    install.packages("BiocManager")
}

BiocManager::install("chevreulProcess")

Required knowledge

The chevreulProcess package is designed for single-cell RNA sequencing data. The functions included within this package are derived from other packages that have implemented the infrastructure needed for RNA-seq data processing and analysis. Packages that have been instrumental in the development of chevreulProcess include, Biocpkg("SummarizedExperiment") and Biocpkg("scater").

Asking for help

R and Bioconductor have a steep learning curve so it is critical to learn where to ask for help. The Bioconductor support site is the main resource for getting help: remember to use the chevreulProcess tag and check the older posts.

Quick start to using chevreulProcess

The chevreulProcess package contains functions to preprocess, cluster, visualize, and perform other analyses on scRNA-seq data. It also contains a shiny app for easy visualization and analysis of scRNA data.

chvereul uses SingelCellExperiment (SCE) object type (from SingleCellExperiment) to store expression and other metadata from single-cell experiments.

This package features functions capable of:

  • Performing Clustering at a range of resolutions and Dimensional reduction of Raw Sequencing Data.
  • Visualizing scRNA data using different plotting functions.
  • Integration of multiple datasets for consistent analyses.
  • Cell cycle state regression and labeling.

library("chevreulProcess")
#> Error in get(paste0(generic, ".", class), envir = get_method_env()) : 
#>   object 'type_sum.accel' not found

# Load the data
library(chevreuldata)
chevreul_sce <- human_gene_transcript_sce()
chevreul_sce
#> class: SingleCellExperiment 
#> dim: 56267 794 
#> metadata(4): merge.info pca.info experiment markers
#> assays(3): reconstructed counts logcounts
#> rownames(56267): 5-8S-rRNA 5S-rRNA ... ZZEF1 ZZZ3
#> rowData names(1): rotation
#> colnames(794): hs20151130-SC1-26 hs20151130-SC1-28 ...
#>   20200312-DS-dissected-81 20200312-DS-dissected-83
#> colData names(33): batch Sequencing_Run ... gene_snn_res.0.8
#>   gene_snn_res.1
#> reducedDimNames(3): corrected TSNE UMAP
#> mainExpName: integrated
#> altExpNames(2): gene transcript

R session information.

#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
#>  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
#>  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
#> [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
#> 
#> time zone: UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] chevreuldata_0.99.25        ExperimentHub_2.14.0       
#>  [3] AnnotationHub_3.14.0        BiocFileCache_2.14.0       
#>  [5] dbplyr_2.5.0                chevreulProcess_0.99.23    
#>  [7] scater_1.34.0               ggplot2_3.5.1              
#>  [9] scuttle_1.16.0              SingleCellExperiment_1.28.1
#> [11] SummarizedExperiment_1.36.0 Biobase_2.66.0             
#> [13] GenomicRanges_1.58.0        GenomeInfoDb_1.42.1        
#> [15] IRanges_2.40.1              S4Vectors_0.44.0           
#> [17] BiocGenerics_0.52.0         MatrixGenerics_1.18.0      
#> [19] matrixStats_1.4.1           BiocStyle_2.34.0           
#> 
#> loaded via a namespace (and not attached):
#>   [1] jsonlite_1.8.9            shape_1.4.6.1            
#>   [3] magrittr_2.0.3            ggbeeswarm_0.7.2         
#>   [5] GenomicFeatures_1.58.0    rmarkdown_2.29           
#>   [7] GlobalOptions_0.1.2       fs_1.6.5                 
#>   [9] BiocIO_1.16.0             zlibbioc_1.52.0          
#>  [11] ragg_1.3.3                vctrs_0.6.5              
#>  [13] memoise_2.0.1             Rsamtools_2.22.0         
#>  [15] DelayedMatrixStats_1.28.0 RCurl_1.98-1.16          
#>  [17] htmltools_0.5.8.1         S4Arrays_1.6.0           
#>  [19] curl_6.0.1                BiocNeighbors_2.0.1      
#>  [21] SparseArray_1.6.0         sass_0.4.9               
#>  [23] bslib_0.8.0               desc_1.4.3               
#>  [25] cachem_1.1.0              ResidualMatrix_1.16.0    
#>  [27] GenomicAlignments_1.42.0  igraph_2.1.2             
#>  [29] mime_0.12                 lifecycle_1.0.4          
#>  [31] pkgconfig_2.0.3           rsvd_1.0.5               
#>  [33] Matrix_1.7-1              R6_2.5.1                 
#>  [35] fastmap_1.2.0             GenomeInfoDbData_1.2.13  
#>  [37] digest_0.6.37             colorspace_2.1-1         
#>  [39] AnnotationDbi_1.68.0      dqrng_0.4.1              
#>  [41] irlba_2.3.5.1             textshaping_0.4.1        
#>  [43] RSQLite_2.3.9             beachmat_2.22.0          
#>  [45] filelock_1.0.3            httr_1.4.7               
#>  [47] abind_1.4-8               compiler_4.4.2           
#>  [49] bit64_4.5.2               withr_3.0.2              
#>  [51] BiocParallel_1.40.0       viridis_0.6.5            
#>  [53] DBI_1.2.3                 rappdirs_0.3.3           
#>  [55] DelayedArray_0.32.0       rjson_0.2.23             
#>  [57] bluster_1.16.0            tools_4.4.2              
#>  [59] vipor_0.4.7               beeswarm_0.4.0           
#>  [61] glue_1.8.0                restfulr_0.0.15          
#>  [63] batchelor_1.22.0          grid_4.4.2               
#>  [65] cluster_2.1.6             generics_0.1.3           
#>  [67] megadepth_1.16.0          gtable_0.3.6             
#>  [69] tzdb_0.4.0                ensembldb_2.30.0         
#>  [71] hms_1.1.3                 metapod_1.14.0           
#>  [73] BiocSingular_1.22.0       ScaledMatrix_1.14.0      
#>  [75] XVector_0.46.0            BiocVersion_3.20.0       
#>  [77] stringr_1.5.1             ggrepel_0.9.6            
#>  [79] pillar_1.10.0             limma_3.62.1             
#>  [81] circlize_0.4.16           dplyr_1.1.4              
#>  [83] lattice_0.22-6            rtracklayer_1.66.0       
#>  [85] bit_4.5.0.1               tidyselect_1.2.1         
#>  [87] locfit_1.5-9.10           Biostrings_2.74.1        
#>  [89] knitr_1.49                gridExtra_2.3            
#>  [91] bookdown_0.41             ProtGenerics_1.38.0      
#>  [93] edgeR_4.4.1               cmdfun_1.0.2             
#>  [95] xfun_0.49                 statmod_1.5.0            
#>  [97] stringi_1.8.4             UCSC.utils_1.2.0         
#>  [99] EnsDb.Hsapiens.v86_2.99.0 lazyeval_0.2.2           
#> [101] yaml_2.3.10               evaluate_1.0.1           
#> [103] codetools_0.2-20          tibble_3.2.1             
#> [105] BiocManager_1.30.25       cli_3.6.3                
#> [107] systemfonts_1.1.0         munsell_0.5.1            
#> [109] jquerylib_0.1.4           Rcpp_1.0.13-1            
#> [111] png_0.1-8                 XML_3.99-0.17            
#> [113] parallel_4.4.2            pkgdown_2.1.1            
#> [115] readr_2.1.5               blob_1.2.4               
#> [117] scran_1.34.0              AnnotationFilter_1.30.0  
#> [119] sparseMatrixStats_1.18.0  bitops_1.0-9             
#> [121] viridisLite_0.4.2         scales_1.3.0             
#> [123] purrr_1.0.2               crayon_1.5.3             
#> [125] rlang_1.1.4               KEGGREST_1.46.0