Run Differential Expression
Usage
sce_de(
object,
cluster1,
cluster2,
resolution = 0.2,
diffex_scheme = "louvain",
featureType = "gene",
tests = c("t", "wilcox", "bimod")
)
Examples
data("tiny_sce")
sce_de(tiny_sce,
colnames(tiny_sce)[1:100],
colnames(tiny_sce)[101:200],
diffex_scheme = "custom")
#> t
#> $t
#> ensgene symbol p_val avg_log2FC p_val_adj
#> 1 ENSG00000143320 CRABP2 2.822649e-07 1.9728456 2.822649e-06
#> 2 ENSG00000127928 GNGT1 4.724220e-06 -1.9559872 2.362110e-05
#> 3 ENSG00000130561 SAG 3.558212e-05 -1.6333148 1.186071e-04
#> 4 ENSG00000281857 SAG 3.558212e-05 -1.6333148 1.186071e-04
#> 5 ENSG00000114349 GNAT1 9.276651e-05 -1.7262036 2.319163e-04
#> 6 ENSG00000139053 PDE6H 2.870684e-02 1.1588754 5.741368e-02
#> 7 ENSG00000138472 GUCA1C 1.310718e-01 -0.6823109 2.184530e-01
#> 8 ENSG00000129535 NRL 2.213987e-01 -0.4964604 2.828659e-01
#> 9 ENSG00000285493 NRL 2.213987e-01 -0.4964604 2.828659e-01
#> 10 ENSG00000170345 FOS 2.262927e-01 0.4617879 2.828659e-01
#> 11 ENSG00000120500 ARR3 6.327603e-01 0.2353529 7.030670e-01
#> 12 ENSG00000048545 GUCA1A 7.469100e-01 0.1555255 7.469100e-01
#>