Skip to contents

This functions allows you to preprocess, cluster and reduce dimensions for one SingleCellExperiment object.

Usage

sce_process(
  object,
  experiment = "gene",
  resolution = 0.6,
  reduction = "PCA",
  organism = "human",
  process = TRUE,
  ...
)

Arguments

object

A SingleCellExperiment object

experiment

Assay of interest in SingleCellExperiment object

resolution

Resolution for clustering cells. Default set to 0.6.

reduction

Dimensional reduction object

organism

Organism

process

whether to run dimensional reduction and clustering

...

extra parameters passed to internal functions

Value

a processed SingleCellExperiment object

Examples

data(tiny_sce)
sce_process(tiny_sce, process = FALSE)
#> class: SingleCellExperiment 
#> dim: 10 883 
#> metadata(2): markers experiment
#> assays(3): counts logcounts scaledata
#> rownames(10): PDE6H GUCA1A ... NRL FOS
#> rowData names(0):
#> colnames(883): ds20181001-0001 ds20181001-0002 ... ds20181001-1039
#>   ds20181001-1040
#> colData names(49): orig.ident nCount_gene ... nFeature_transcript ident
#> reducedDimNames(2): PCA UMAP
#> mainExpName: gene
#> altExpNames(1): transcript