This functions allows you to Preprocess, Cluster and Reduce Dimensions for a single seurat object.

seurat_pipeline(
  seu,
  assay = "gene",
  resolution = 0.6,
  reduction = "pca",
  organism = "human",
  ...
)

Arguments

seu

A Seurat object

assay

Assay of interest in Seurat object

resolution

Resolution for clustering cells. Default set to 0.6.

reduction

Dimensional reduction object seu

organism

Organism

...

Extra parameters passed to seurat_pipeline

Examples


processed_seu <- seurat_pipeline(panc8)
#> Centering and scaling data matrix
#> PC_ 1 
#> Positive:  CD99, ERO1B, HMGN2, AC124312.1, MT-ND6, MT-ND1, HACD3, MT-ATP6, AL035071.1, NORAD 
#> 	   ATP5F1A, RACK1, PRUNE2, FAM171B, PRELID3B, EFNA5, AL354740.1, ARFGEF3, TENT5C, SARAF 
#> 	   G6PC2, PCSK1, ATP5PB, PFKFB2, ATP5F1C, ATP5F1B, UNC79, RGPD5, HNRNPA1, SLC25A6 
#> Negative:  IFITM3, RHOC, LGALS3, ZFP36L1, SERPING1, LITAF, TACSTD2, SERPINA3, KRT7, LCN2 
#> 	   SDC4, PRSS8, DHRS3, CFB, CTSH, ANXA4, CLDN1, COL18A1, TNFRSF12A, IL32 
#> 	   SERINC2, KRT19, TM4SF1, KRT18, SERPINH1, PDZK1IP1, CLDN4, C3, GPRC5B, PMEPA1 
#> PC_ 2 
#> Positive:  C10orf10, CRYBA2, KRT8, VGF, CLDN4, SERPINA1, CRH, LOXL4, ATP1A1, HSPB1 
#> 	   RASD1, GATM, SERINC2, SLC44A4, KRT18, CD74, CAMK2G, GPX2, UCP2, MUC1 
#> 	   GSTA1, AQP3, PRSS8, ARRDC4, LCN2, SPINK1, S100A6, SDC4, CFB, REG1A 
#> Negative:  COL6A3, SPARC, F2R, NID1, COL4A1, COL15A1, TIMP3, COL1A2, PXDN, PLAT 
#> 	   COL3A1, COL1A1, BGN, COL5A1, CDH11, XAF1, MMP2, SFRP2, PDGFRB, LAMA4 
#> 	   COL5A2, VCAN, ITGA1, ADAMTS4, LRRC32, GPNMB, LUM, CRISPLD2, SRPX2, RPL10 
#> PC_ 3 
#> Positive:  YWHAZ, OCLN, SAT1, SERPINA3, SDC4, LCN2, SOD2, TACSTD2, TM4SF1, KRT7 
#> 	   CFB, CLDN1, CPM, PDZK1IP1, C3, IL32, PRSS8, MT-ND1, MT-ATP6, RACK1 
#> 	   RPL10, TMC5, MT-ND6, CD44, ANXA4, CLDN10, PIGR, HNRNPA1, ANXA3, AKR1C3 
#> Negative:  TIMP1, PDGFRB, COL3A1, COL6A2, BGN, COL1A2, COL5A1, CRYBA2, SPON2, CYGB 
#> 	   SFRP2, AEBP1, MXRA8, COL15A1, MRC2, MMP2, LAMC3, THBS2, THY1, COL1A1 
#> 	   NID1, C11orf96, COL6A1, CDH11, SPARC, HTRA3, LRRC32, VCAN, LUM, IGFBP4 
#> PC_ 4 
#> Positive:  MCAM, TINAGL1, FLT1, TM4SF18, PLVAP, ERG, IGFBP7, CFTR, MYCT1, ECSCR 
#> 	   PMEPA1, ACVRL1, MMP7, STC1, KRT23, RGCC, VTCN1, S1PR1, PCDH12, AQP1 
#> 	   IFI27, CA2, CLEC14A, EMCN, CD93, CDH5, ESAM, PTPRB, CXCR4, SPP1 
#> Negative:  CTRB1, CTRB2, CTRC, CPA2, PNLIP, REG1B, PRSS1, PLA2G1B, PRSS3, CPA1 
#> 	   CELA2A, KLK1, CELA3A, CPB1, PRSS3P2, PNLIPRP1, BCAT1, PNLIPRP2, RARRES2, MGST1 
#> 	   DPEP1, SYCN, ALB, CELA3B, REG3A, CXCL17, PDIA2, SPINK1, GSTA2, CEL 
#> PC_ 5 
#> Positive:  PODXL, FLT1, ERG, PLVAP, MYCT1, ECSCR, CD93, S1PR1, EMCN, CDH5 
#> 	   CLEC14A, PCDH12, RGCC, VWF, PTPRB, PRDM1, ESAM, ACVRL1, CALCRL, F2RL3 
#> 	   ROBO4, BCL6B, TM4SF18, CXCR4, ELTD1, ICAM2, PECAM1, ESM1, CLIC2, CXorf36 
#> Negative:  CFTR, MMP7, ALDH1A3, IER3, SPP1, VTCN1, C1S, KRT23, SERPING1, TSPAN8 
#> 	   KRT19, TFPI2, HSD17B2, AQP1, LGALS4, LITAF, CLDN10, SLC3A1, NOTCH3, ANXA3 
#> 	   SERPINA5, CHI3L1, DEFB1, COL1A1, VCAM1, CDH6, CEACAM7, PDLIM3, SDC1, ATP1A1 
#> Warning: Command RunPCA.gene changing from SeuratCommand to SeuratCommand
#> Warning: Command RunTSNE changing from SeuratCommand to SeuratCommand
#> Warning: The following arguments are not used: check_duplicates
#> 13:36:12 UMAP embedding parameters a = 0.9922 b = 1.112
#> Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
#> Also defined by 'spam'
#> 13:36:12 Read 1011 rows and found 30 numeric columns
#> 13:36:12 Using Annoy for neighbor search, n_neighbors = 30
#> Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
#> Also defined by 'spam'
#> 13:36:12 Building Annoy index with metric = cosine, n_trees = 50
#> 0%   10   20   30   40   50   60   70   80   90   100%
#> [----|----|----|----|----|----|----|----|----|----|
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> *
#> |
#> 13:36:12 Writing NN index file to temp file /tmp/RtmpLoWyKl/file320632545260d
#> 13:36:12 Searching Annoy index using 1 thread, search_k = 3000
#> 13:36:13 Annoy recall = 100%
#> 13:36:13 Commencing smooth kNN distance calibration using 1 thread
#>  with target n_neighbors = 30
#> 13:36:15 Initializing from normalized Laplacian + noise (using RSpectra)
#> 13:36:15 Commencing optimization for 500 epochs, with 40366 positive edges
#> 13:36:16 Optimization finished
#> Warning: Command RunUMAP.gene.pca changing from SeuratCommand to SeuratCommand
#> [13:36:16] Clustering Cells...
#> Computing nearest neighbor graph
#> Computing SNN
#> Warning: Command FindNeighbors.gene.pca changing from SeuratCommand to SeuratCommand
#> clustering at 0.6 resolution
#> Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
#> 
#> Number of nodes: 1011
#> Number of edges: 35653
#> 
#> Running Louvain algorithm...
#> Maximum modularity in 10 random starts: 0.8853
#> Number of communities: 9
#> Elapsed time: 0 seconds
#> Warning: Command FindClusters changing from SeuratCommand to SeuratCommand
#> stashing presto markers for gene_snn_res.0.2
#> stashing presto markers for gene_snn_res.0.4
#> stashing presto markers for gene_snn_res.0.6
#> stashing presto markers for gene_snn_res.0.8
#> stashing presto markers for gene_snn_res.1
#> stashing presto markers for gene_snn_res.1.2
#> stashing presto markers for gene_snn_res.1.4
#> stashing presto markers for gene_snn_res.1.6
#> stashing presto markers for gene_snn_res.1.8
#> stashing presto markers for gene_snn_res.2